Архиве аутора: Jelena Merseli

ЕТЕРНЕТ

ЕТЕРНЕТ (енгл. Ethernet) је протокол и најкоришћенија вишемедијумска технологија локалних рачунарских мрежа, описана великим бројем IEEE 802.3 стандарда, који дефинишу технологије физичког и слоја везе референтног ОСИ модела. Испрва је изведена у топологији магистрале на заједничком коаксијалном каблу са протоколом који динамички одређује како рачунари приступају мрежи (CSMA/CD). Етернет данас шири свој опсег применљивости на MAN и WAN мреже, има топологију звезде или стабла, док као медијум користи бакарне и оптичке каблове. Поред основне функције дељења заједничких ресурса у локалној мрежи, има и функције приступа (интернету), окосинце међу мрежама и дистрибуције података на веће удаљености. Етернет дефинише како се станице везују на рачунарску мрежу, технологију која се користи за пренос сигнала, потом начин како станице приступају датој мрежи, брзину преноса, начин сигнализације и кодирања информација, као и величину и формат пакета информације који се користи при комуникацији.

images

ИСТОРИЈАТ

За претечу етернета можемо сматрати технологију коју су развили истраживачи Норман Абрамсон и његове колеге са Хавајског универзитета. Наиме, код њих је постојао проблем како повезати кориснике на удаљеним острвима са централним рачунаром (развлачење каблова испод Пацифика није разматрано). Решење су пронашли у комуникацији радијом кратког домета. Сваки кориснички терминал је опремљен примопредајником са по две фреквенције: једном за емитовање ка централном рачунару и другом за пријем података са централног рачунара.

1101119356_1954-2004_computer1

СТАНДАРДИЗАЦИЈА ЕТЕРНЕТА

Први стандард етернета је објављен 1980. године од стране DIX конзорцијума произвођача (енгл. Digital Equipment Corporation – DEC, Intel, Xerox) за брзине преноса 10 Mb/s. Користећи иницијале ових компанија назван је DIX етернет стандард. Овај стандард дефинисао је етернет као технологију локалних рачунарских мрежа са спецификацијама за рад на систему заснованом на дебелом коаксијалном каблу. Као и код свих стандарда, DIX стандард је убрзо допуњен техничким изменама, поправкама и малим побољшањима, DIX V2.0 стандард. DIX конзорцијум је развио ове стандарде тако да их је сваки произвођач могао користити, технологија која је била доступна свима. Највећу цену платио је Зирокс који је морао да се одрекне права на патентирану технологију. 1982. године Зирокс је дао и право на коришћење имена етернет[2]. У време кад је објављен DIX стандард, професионална организација, Институт инжењера електротехнике и електронике (енгл. Institute of Electrical and Electronics Engineers – IEEE) бавио се прављењем отвореног стандарда локалних мрежа.

Веза етернета са ОСИ моделом

Стандарди IEEE организације су уређени према ОСИ референтном моделу или референтном моделу за отворено повезивање система (енгл. Open Systems Interconnection Basic Reference Model). Етернет као IEEE стандард представља протокол који ради на прва два слоја ОСИ модела, и то на физичком слоју и MAC подслоју слоја везе.

osi-1

Етернет слој везе

Функције другог слоја укључују MAC и етернет преусмеравање фрејмова које се такође назива премошћавање. За разлику од традиционалних мрежа са комутирањем кола, етернет је технологија са комутирањем пакета. Сваки етернет фрејм је означен адресом извора (SA) и адресом дестинације (DA) које користе етернет мостови како би проследили фрејм на одговарајућу дестинацију. IEEE 802.3 стандард покрива само MAC део слоја везе, док је етернет премошћавање покривено IEEE 802.1 стандардом. Најважнија идеја за етернет премошћавање је дефинисана IEEE 802.3 D стандардом (енгл. Spanning Tree Protocol – STP).

CSMA/CD и перформансе етернета

 

  • Максимална величина оквира је 1536 B

Ова величина је произвољно одређена граница, условљена примопредајником. У тренутку постављања DIX-овог стандарда (1978) меморија је била прилично скупа, а захтевало се да примопредајници морају имати довољно радне меморије да прихвате читав оквир.

 

  • Минимална величина оквира износи 64 B

На ову величину утиче механизам откривања сукобљавања на каналу (енгл. Collision detect), изведена је на моделу оригиналног етернета. Ако посматрамо оригинални етернет систем базиран на дебелом коаксијалном каблу 10Base5 са спецификацијама наведеним у табели, можемо да извршимо одређену анализу.

indexindex1

  •  Искоришћеност система

У претходном делу увели смо неке основне параметре за прорачун. Ако посматрамо етернет као повремени CSMA систем, интервал који се бира као јединица је управо 2τ. Ако станица утврди да на каналу постоји саобраћај, она неће даље ослушкивати канал, већ ће то учинити тек након 2kτ. Перформансе ћемо испитати у условима густог и константног саобраћаја, тј. када је Nа станица увек спремно да емитује. Станице приступају каналу у току временског интервала предвиђеног за конкурентско приступање (у току конкурентског блока).

 Blok_pristupanja_eternet

 Етернет адресирање

У почетку, етернет је био изведен у топологији магистрале. Сваки мрежни уређај је био повезан на исти, заједнички медијум и сваки сигнал је слат свим уређајима одједном. Са ниским прометом или у малим мрежама, то је био прихватљиво решење. Главни проблем је било како уређај да препозна да је примљени сигнал намењен за њега а не за неки други уређај на истој мрежи. У ту сврху је створен јединствени идентификатор назван „физичка“ или MAC адреса. Без обзира на тип етернета који се користи, овај договор о представљању адресе уређаја је прихваћен на нижим слојевима ОСИ модела. Физичка адреса је представљена 48-битном вредношћу у хексадекадној нотацији и додаје се подацима другог слоја ОСИ модела.

index2

ТОПОЛОГИЈА МАГИСТРАЛЕ

Заглавље етернет оквира

Да бисмо дискутовали о операцијама премошћавања морамо разумети формат етернет фрејмова. Слика показује формат етернет фрејма. Овај основни формат је остао непромењен у поприличном периоду времена, упркос брзом развоју етернета и другачијој технологији израде физичких слојева. Етернет је више-медијумска технологија зато што оперише на различитим медијумима при различитим брзинама. Етернет уређаји се дизајнирају са врло јасно дефинисаним интерфејсом између MAC слоја и физичког слоја. Овај слојевити приступ дозвољава физичком слоју да се развија независно од MAC подслоја. Етернет фрејмови представљају формат података за MAC слој. То је уобичајена спецификација за формате MAC фрејмова који дозвољавају етернет направе различитих брзина. Заправо, комутатори су обично конструисани од портова различитих брзина и типова медијума. Етернет фрејмови могу бити са делом за податке различитие дужине (између 46 и 1.500 октета).Непроменљиви формат дозвољава свакој генерацији етернета да буде компатибилна са претходним генерацијама, тако да корисник не мора унапређивати софтвер горњег слоја и апликације када је брзина мреже повећана. Ово је одиграло велику улогу при обезбеђивању успеха етернета. Етернет фрејм почиње са уводним пољем код кога се наизменично мењају „0‟ и „1‟ које је раније коришћено за синхронизовање рада станица. Када су етернет конекције постале од тачке до тачке, синхронизација предајника и пријемника се одржавала преносом посебних сигнала када нема података за слање. То уклања потребу за уводним пољем, које се упркос томе задржава због компатибилности са претходним верзијама.

  1. Преамбула (7 бајтова) – Представља 7 бајтова са низом нула и јединица 10101010. Овим кодом се врши синхронизација комуникације и упозорава се пријемна станица да пристиже фрејм.
  2. Разграничавач (1 бајт, енгл. Start of frame delimiter, SDF) – Представља кŏд 10101011 након кога следи одредишна адреса.
  3. Одредишна адреса (6 бајтова, енгл. Destination address, DA) – Одређује која станица треба да прими фрејм.
  4. Адреса извора (6 бајтова, енгл. Source address, SA) – Адреса уређаја који шаље фрејм.
  5. Дужина/тип (2 бајта) – двооктетно поље дужина/тип за репрезентацију дужине корисног поља. Пошто је дозвољена максимална величина корисног дела фрејма (поља за податке) само 1.500 бајтова, вредност дужина/тип изнад 1.536 представља тип етернет фрејмова. Често се користи као представник протокола горњих слојева или као тип управљачких информацијама садржаних у делу за податке
  6. Пакет (46-1.500 бајтова) – Поље у којем су садржани подаци, ако је дужине мање од 46 бајтова попуњава се празнинама.
  7. Секвенца за проверу фрејма (4 бајта, енлг Frame Check Sequence, FCS) – Уписује се резултат алгоритма CRC примењеног на фрејму, у циљу препознавања оштећења пакета при физичком преносу.

Широки етернет

Широки етернет или 10Base5 систем, користи дебели коаксијални кабл (пречника 9,5 mm, импедансе 50 Ω). Ови каблови су посебно пројектовани за етернет али могу да се користе и стандардни дебели коаксијални каблови. Оваква мрежа у односу на танки етернет има следеће особине:

  • Поузданија је од танког етернета.
  • Може да премости већа растојања.
  • Сложенија архитектура мреже.
    450px-10BaseT_sr

     

     

    Танки етернет

Танки етернет или 10Base2 систем, користи танки коаксијални кабл (0,48 mm, импедансе 50 Ω). Танки коаксијални кабл је био прилично популаран јер се лакше припремао и уграђивао од дебелог кабла за широки етернет а има исту брзину комуникације и јефтинији је. Широки и танки етернет се директно везују за сегмент. Данас се практично не користе и нису подржани новим 802.3 стандардима.

Компоненте етернета

Етернет се састоји од уређаја (рачунара, штампача, мрежне опреме итд.) и каблова који повезују те рачунаре. Мрежне уређаје можемо поделити у две основне класе:

  • Терминална опрема за податке (енгл. Data Terminal Equipment, DTE) – уређаји који представљају извор или одредишта података (фрејмова). Обично су то рачунари, радне станице, сервери података, штампачи итд. Често коришћен назив за терминалну опрему је „терминал“.70_big[1] pc-computer
  • Опрема за комуницирање подацима (енгл. Data Communication Equipment, DCE) – уређаји унутар мреже који примају и прослеђују фрејмове кроз мрежу. Опрема за комуницирање подацима може да буде јединствен уређај као што је рипитер, комутатор (свич) и рутер, али може да буде и јединица спреге као што је мрежна картица NIC и модем. Један од коришћених назива за опрему за комуницирање подацима је „чвор мреже“.index3

 

Мрежне картице (енгл. Network Interface Card, NIC) конвертују, пакују у фрејм и преносе податке из рачунара, а потом примају, распакују и деконвертују примљено са мреже. Мрежне картице има800px-Network_cardју специфичну архитектуру дизајнирану посебно за етернет са неким од следећих улаза за конекторе: BNC, AUI или RJ-xx, најкоришћенији RJ-45. Свака од етернетских картица садржи јединствену физичку адресу у свом ROM чипу. Део ове адресе садржи информације о произвођачу, а део је јединствен серијски број картице. Мрежна картица се састоји од три основна дела:

  • Спреге физичке средине за пренос – одговорна за електрично слање и пријем података.
  • Састоји се од преносника који шаље или прима податке и конвертора кода.
  • Контролера линка података – одговара MAC подслоју
  •  Рачунарска спрега

Мрежне картице можемо поделити у четири основна блока: спрега мреже, декодер, меморијски бафер и рачунарска спрега

Као медијум за пренос, етернет користи коаксијалне каблове, упредене парице (UTP и STP) или оптичка влакна.

 Каблови и конектори

 Каблови који се користе у етернету припадају трима групама те у зависности од тога који каблови су у питању користимо и одговарајуће конекторе. Код модерних етернета за повезивање се више не користе коаксијални каблови. Унутар локалних мрежа користе се UTP каблови, док се етернет са оптичким кабловима користи као кичма при повезивању мрежа на различитим локацијама око 2 km.

  •  Коаксијални каблови
  • танки, BNC конектори.
  • дебели, конектори су били убодне рачве на примопредајник800px-BNC_connector_(male)у (користио се AUI кабл примопредајника).
  • Неоклопљене упредене парице UTP и RJ-45 конектори, сви Base-T системи .
  • Оптички каблови и конектори, Base-F системи .
  • мултимодна оптичка влакна 50/125 μm и 62,5/125 μm
  • мономдна оптичка влакна 9/125 μm
  • конектори SC систем 10Base-F, ST 100Base-FX систем.
  • MT-RJ и LC конектори

 

ТИПОВИ ЕТЕРНЕТА

1.Брзи етернет

Брзи етернет (енгл. FastEthernet) или 100Base-T је настао као напредна верзија стандардног етернета 10Base-T. Као резултат унапређивања стандардног етернета развијена су три одвојена стандарда физичког слоја: 100Base-TX, 100Base-T4 1995. и 100Base-T2 1997. године. До побољшања је дошло тако што се користила другачија техника кодирања података. Сваки од наведених стандарда користио је нов метод кодирања.

  • 100Base-TX – 4B/5B
  • 100Base-T4 – 8B/6T и
  • 100Base-T2 – PAM5x5

 2.Гигабитни етернет

Гигабитни етернет (Gigabit Ethernet, 1000BASE-T) има проток од 1000 Mb/s. Развијени су стандарди:

  • 1000Base-T – Користи UTP кабл категорије 5, са сва четири пара парица уз кодирање 4D-PAM5.
  • 1000Base-CX – STP кабл са 2 парице, кодирање 8B/10B.
  • 1000Base-SX – вишережимско оптичко влакно, ласерска светлост таласне дужине 800 нм и домета до 550 m и
  • 1000Base-LX – једнорежимско оптичко влакно, таласне дужине 1300 нм и домета до 5 km.

3. 10 гигабитни етернет

Тренутно, технологија која подржава најбржу везу је 10-гигабитни етернет први пут објављена 2002. године као стандард IEEE 802.3ae. Дефинише верзију етернета са номиналном пропусном моћи од 10 Gb/s, десет пута већим од гигабитног етернета. Протеклих година радна група за стандард 802.3 објавила је следеће стандарде:

  • 802.3ae-2002
  • 802.3ak-2004
  • 802.3an-2006
  • 802.3aq-2006 и
  • 802.3ap-2007

10-гигабитни етернет подржава само комуникацију у потпуном дуплексу (двосмерну комуникација са могућношћу истовременог примања и слања поруке), користећи при томе бакарне STP и UTP каблове категорија 6а и 7 и оптичка влакна. Новембра 2006. године, радна група IEEE сложила се да истражује 100-гигабитни етернет као следећу верзију технологије.

МЕРСЕЛИ ЈЕЛЕНА